The Crystal Structure of Zeophyllite

By Stefano Merlino
Istituto di Mineralogia dell'Università di Pisa, Italy

(Received 23 March 1972)

Abstract

Zeophyllite is rhombohedral, space group $R \overline{3}$, with a triple hexagonal cell having $a=9 \cdot 36, c=36 \cdot 48 \AA$. The structure was solved by means of the symbolic addition method and refined by the least-squares method to a final R value of 0.096 . The crystal structure is made up of layers consisting of a central sheet of calcium polyhedra sandwiched between two centrosymmetrically equivalent sheets of silicon tetrahedra and calcium polyhedra. These sheets are characterized by rings of twelve tetrahedra, and the centre of each ring is occupied by a group of three calcium polyhedra around a threefold axis. The three-sheet structural layers succeed each other in the cdirection and are connected only by hydrogen bonds. The formula obtained for the specimen studied is $\left(\mathrm{Ca}_{12.1} \mathrm{Al}_{0.7} \mathrm{Mg}_{0.1} \mathrm{Na}_{0.1}\right) \mathrm{Si}_{20} \mathrm{O}_{28} \mathrm{~F}_{7 \cdot 4} \mathrm{O}_{0.6}(\mathrm{OH})_{2 \cdot 0} .6 \mathrm{H}_{2} \mathrm{O}$.

Introduction

Zeophyllite is a calcium silicate discovered by Pelikan (1902a,b), associated with apophyllite and zeolites at Leitmeritz, Bohemia. The crystals have a micaceous appearance and Pelikan indicated they are trigonal with a cleavage (0001). By means of morphological studies, both Pelikan and Koechlin (1934) concluded that zeophyllite crystals are probably rhombohedral.

A comprehensive study of zeophyllite was made by Chalmers, Dent \& Taylor (1956) on a sample from Alter Berg, Leitmeritz, Bohemia. They obtained unitcell data by means of X-ray and electron diffraction, presented a new chemical analysis and a dehydration curve and studied, by X-ray diffraction methods, crystals heated at various temperatures from $450^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$; they finally suggested a formula and a structural hypothesis for zeophyllite. They indicated a triclinic unit cell with $a_{t}=b_{t}=9 \cdot 34, c_{t}=13 \cdot 2 \AA, \alpha_{t}=$ $90^{\circ}, \beta_{t}=110^{\circ}, \gamma_{t}=120^{\circ}$, but observed that it could be described as hexagonal with $a=9.34 \AA$ and a tilted axis, and remarked that the pseudo-hexagonal character was shown by the electron diffraction pattern from a crystal lying with the cleavage plane normal to the beam.

As regards the chemical composition, Pelikan (1902b) gave the formula $\mathrm{Ca}_{4} \mathrm{Si}_{3} \mathrm{O}_{11} \mathrm{H}_{4} \mathrm{~F}_{2}$. Chalmers et al. (1956), on the basis of the new chemical analysis and of the dehydration curve which showed a step at $300-400^{\circ} \mathrm{C}$ corresponding to the loss of two thirds of the water, proposed $\mathrm{Ca}_{12} \mathrm{Si}_{9} \mathrm{O}_{24}(\mathrm{OH})_{6} \mathrm{~F}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ as the cell content of zeophyllite.

X-ray crystallography

For the present crystal structure determination a sample from Radzein, Bohemia was used. From X-ray

Weissenberg and precession photographs a trigonal symmetry was found and a rhombohedral cell was determined. The unit-cell data, referred to hexagonal axes, are:

$$
a_{\text {hex }}=9 \cdot 36, \quad c_{\text {hex }}=36 \cdot 48 \AA, \quad U_{\text {hex }}=2767 \cdot 8 \AA^{3} .
$$

Space group: $R \overline{3}$ or $R 3$.
The corresponding rhombohedral single cell has parameters:

$$
a_{\mathrm{rh}}=13.31 \AA \quad \alpha_{\mathrm{rh}}=41^{\circ} 11^{\prime} \quad U_{\mathrm{rh}}=922.6 \AA^{3} .
$$

The hexagonal and rhombohedral cells are simply related to the triclinic cell assumed by Chalmers, Dent \& Taylor* (1965): a_{1} and b_{1} axes correspond to the $a_{\text {nex }}$ and $b_{\text {nex }}$ axes of the hexagonal cell and c_{t} axis corresponds to c_{rh} axis of the rhombohedral cell. It should be noted that the 'reverse' setting was adopted for the rhombohedral cell: thus the triple hexagonal cell has equivalent lattice points at $\frac{1}{3} \frac{2}{3} \frac{1}{3}$ and $\frac{2}{3} \frac{1}{3} \frac{2}{3}$, and reflexions are present only for $h-k+l=3 n$.

The transformation matrices from the triclinic to the rhombohedral and hexagonal unit cells are respectively [101/111/001] and [100/010/213].

Data collection and reduction

For the intensity data collection, a cleavage fragment was cut to a nearly rectangular plate with dimensions $0.77 \times 0.43 \times 0.0029 \mathrm{~cm}$. The data were collected by means of integrated Weissenberg photographs and the multiple-film technique. The crystal was rotated about

[^0]the $b_{\text {nex }}$ axis; eight layers ($k=0$ to 7) were taken using $\mathrm{Cu} K \alpha$ radiation ($\lambda=1 \cdot 5418 \AA$) and 996 independent reflexions were observed. The intensities, measured on a Nonius microdensitometer, have been corrected for Lorentz and polarization factors; the absorption correction ($\mu=88.6 \mathrm{~cm}^{-1}$ for $\mathrm{Cu} K \alpha$ radiation) was made by computing the transmission factors by means of a program (Alberti, 1968) based on the Monte Carlo method proposed by Alberti \& Gottardi (1966).

By means of the DATFIX program, incorporated in the Crystal Structures Calculations System X-RAY 63 (Stewart, 1964), an overall isotropic temperature factor, the scale factors for the intensity data and the normalized structure factor magnitudes E were calculated. The method of calculation of the estimated parameters is based upon the normal statistics of the E magnitudes. The statistical averages and distribution of E are given in Table 1, in which they are compared with the theoretical values for both a centrosymmetric and a non-centrosymmetric distribution of atoms in the unit cell. The unobserved reflexions were given an intensity of one half the minimum observed intensity. The experimental values in Table 1 correspond to a crystal with a centre of symmetry; thus the space group $R \overline{3}$ was assumed for zeophyllite and the choice was subsequently confirmed by structure analysis.

Table 1. Statistical averages and distribution of E for zeophyllite

	Experi- mental	Centro- symmetric	Non-centro- symmetric
$\langle \| E\rangle$	0.752	0.798	0.886
$\langle \| E^{2}-1\| \rangle$	1.098	0.968	0.736
$\langle \| E^{2}\| \rangle$	1.000	1.000	1.000
$\|E\|>3$	0.6%	0.3%	0.01%
$\|E\|>2$	5.6	5.0	1.8
$\|E\|>1$	29.2	32.0	36.8

Determination and refinement of the structure

It was observed by Chalmers et al. (1956) that the strong $h k .0$ reflexions form a sub-lattice with hexagonal $a=3.53 \AA$, which is similar to the a axis ($3 \cdot 59 \AA$) of $\mathrm{Ca}(\mathrm{OH})_{2}$ (portlandite): the basal area of the zeophyllite cell is seven times that of portlandite. Thus, following their suggestion, some trials were made to solve the structure assuming two calcium ions sheets (six sheets in the triple hexagonal cell) variously stacked. The trials were, however, inconclusive and the reason, as will be seen from the following, lies in the fact that there is only one such sheet of seven calcium ions; moreover these seven ions are not exactly at the same level as there are differencies in level of up to $0.95 \AA$.

Direct methods were successfully applied to the
solution of the structures, using a program written by Hall (1966) and modified by Ahmed (1969). As the origin is specified in the space group $R \overline{3}$ by assigning the phase to only one reflexion with l odd, a positive sign was given to the reflexion $70 \overline{7}(E=3 \cdot 28)$. The program then conveniently assigns symbols to other reflexions. The symbolic addition procedure was applied to the reflexions with $E \geq 2.0$ and then extended to those with $E \geq 1 \cdot 5$. At the end of the process, signs were obtained for 90% of the reflexions with $E \geq 1.5$ in terms of only one symbol. Of the two threedimensional E maps computed on the basis of the set of phases corresponding to the two possible choices of the sign of the unknown symbol, one was not interpretable. The other showed the required number of distinct maxima corresponding to the cations in the structure, as well as a number of lower peaks hardly distinguishable from the background.

From the positions of the distinct maxima, which on the basis of their heights were attributed to calcium or silicon atoms, and by making use of crystal chemical considerations, the positions of the oxygen and fluorine atoms were selected among the lowest peaks appearing in the E map.

A sound structure was thus obtained and three cycles of full-matrix least-squares refinement of the resulting set of parameters were computed by means of the ORFLS program (Busing, Martin \& Levy, 1962) adapted to the $X-R A Y 63$ System (Stewart, 1964). The scale factors and individual isotropic temperature factors were included in the refined parameters. The R value for the observed reflexions was reduced to $0 \cdot 12$ $\left(R=\sum| | F_{o}\left|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|\right)$.

Up to this point no distinction was made between the oxygen and fluorine atoms. At this stage, however, two temperature factors resulted negative and one more was positive but anomalously low: they corresponded to three supposed oxygen atoms, one in a general position and two in special positions along a threefold axis. This observation suggested a distribution of fluorine among these sites and the resulting distribution was very satisfactory from a crystal chemical point of view.

Two more refinement cycles were calculated and the following weighting scheme, based on the plot of ΔF vs. F_{o}, was applied to all the observed reflexions:

$$
V w=\left(0 \cdot 63\left|F_{o}\right|+1 \cdot 0\right)^{-1}
$$

The final R value was $0 \cdot 096$. The shifts in all parameters in the last cycle were well within the standard deviations, with an average $\Delta / \sigma=0 \cdot 04$, where Δ is defined as the change in a parameter in the last leastsquares cycle and σ as the e.s.d. of the parameter in that cycle.

The atomic scattering factors for $\mathrm{Ca}, \mathrm{Si}, \mathrm{O}$ and F were taken from International Tables for X-ray Crystallography (1962).

The observed and calculated factors are compared in Table 2. Table 3 gives the final positional and thermal parameters with their standard deviations.

Table 2. Observed and calculated structure factors $\left(\times 10^{2}\right)$

Table 3. Positional parameters in fractional coordinates and isotropic temperature factors
The significant figures of standard deviations are given in parentheses.

	x	y	z	B
$\mathrm{Ca}(1)$	0	0	0	0.71 (8) \AA^{2}
$\mathrm{Ca}(2)$	$0 \cdot 4323$ (3)	$0 \cdot 1473$ (3)	0.01308 (5)	0.70 (5)
$\mathrm{Ca}(3)$	$0 \cdot 4612$ (3)	$0 \cdot 3560$ (3)	0.09470 (6)	$0 \cdot 90$ (5)
Si(1)	0	0	$0 \cdot 11677$ (13)	0.77 (8)
$\mathrm{Si}(2)$	$0 \cdot 0898$ (4)	0-3024 (4)	0.07305 (8)	0.72 (5)
Si(3)	$\frac{1}{3}$	$\frac{2}{3}$	0.06531 (13)	0.73 (8)
O(1)	0	0	$0 \cdot 16057$ (41)	1.85 (27)
$\mathrm{O}(2)$	$0 \cdot 1302$ (10)	$0 \cdot 1855$ (10)	0.09984 (19)	1.01 (13)
$\mathrm{O}(3)$	$0 \cdot 2589$ (10)	0.4804 (10)	0.08136 (18)	0.95 (12)
$\mathrm{O}(4)$	0.3790 (10)	0.0755 (10)	0.08314 (22)	1.31 (14)
O(5)	$0 \cdot 0803$ (9)	$0 \cdot 2514$ (9)	$0 \cdot 03042$ (19)	$0 \cdot 85$ (12)
$\mathrm{O}(6)$	$\frac{1}{3}$	$\frac{2}{3}$	0.02123 (37)	1.29 (22)
O(7)	0.4459 (14)	$0 \cdot 4607$ (14)	$0 \cdot 15377$ (30)	$3 \cdot 18$ (21)
F(1)	$0 \cdot 4392$ (8)	0.3899 (8)	0.03009 (16)	$1 \cdot 10$ (11)
$\mathrm{F}(2)$	$\frac{2}{3}$	$\stackrel{1}{3}$	0.05399 (26)	$0 \cdot 58$ (16)
F(3)	$\frac{2}{3}$	$\frac{1}{3}$	$0 \cdot 12641$ (33)	1.40 (21)

Discussion of the structure

The crystal structure of zeophyllite is represented in Figs. 1 and 2. The structure is made up of layers consisting of a central sheet of calcium polyhedra sandwiched between two centrosymmetrically equivalent sheets of silicon tetrahedra and calcium polyhedra. The three-sheet structural layers succeed each other in the \mathbf{c} direction and are connected only by hydrogen bonds, which explains the micaceous appearance and the easy cleavage (0001).

The interatomic distances and bond angles were calculated by means of the program BONDLA incorporated in the Crystal Structures Calculations System X-RAY 63 (Stewart, 1964).

Bond lengths and angles are reported in Table 4. The atoms of the different asymmetric units are related by superscripts to the symmetry equivalent atoms of the fundamental unit as follows:

i	$\frac{1}{3}-x$	$\frac{2}{3}-y$	$\frac{1}{3}-z$
ii	$\frac{4}{3}-x$	$\frac{2}{3}-y$	$\frac{1}{3}-z$
iii	$1-x$	$1-y$	$-z$
iv	$1-y$	$x-y$	z
v	$-y$	$x-y$	z
vi	y	$-x+y$	$-z$
vii	$1-x-y$	$1-x$	z
viii	$-x+y$	$-x$	z.

Anion chemistry

Table 5 shows the bond lengths and the estimated bond valences using the method of Donnay \& Allmann (1970). The valence sums of the bonds joining each anion are indicated as $\sum_{c} v$ in the Table, and were derived making no distinction between oxygen and fluorine atoms. The last column reports the values corrected for the contributions of the hydrogen bonds.

The chemistry of the various anions can be determined from this Table, if account is also taken: (a) of

Table 4. Bond lengths and angles with their standard deviations
Silicon tetrahedra

\quad Length		
$\mathrm{Si}(1)-\mathrm{O}(1)$	1.598	$0.016 \AA$
$\mathrm{Si}(1)-\mathrm{O}(2)$	$1.663[\times 3]$	0.007
$\mathrm{Si}(2)-\mathrm{O}(2)$	1.646	0.010
$\mathrm{Si}(2)-\mathrm{O}(3)$	1.654	0.007
$\mathrm{Si}(2)-\mathrm{O}(5)$	1.616	0.008
$\mathrm{Si}(2)-\mathrm{O}\left(4{ }^{\text {v }}\right)$	1.595	0.010
$\mathrm{Si}(3)-\mathrm{O}(6)$	1.008	0.014
$\mathrm{Si}(3)-\mathrm{O}(3)$	$1.629[\times 3]$	0.008

Calcium polyhedra

\quad Length		
$\mathrm{Ca}(1)-\mathrm{O}(5)$	$2.359[\times 6]$	$0.008 \AA$
$\mathrm{Ca}(2)-\mathrm{O}(4)$	2.626	0.008
$\mathrm{Ca}(2)-\mathrm{F}(1)$	2.324	0.008
$\mathrm{Ca}(2)-\mathrm{F}(2)$	2.501	0.006
$\mathrm{Ca}(2)-\mathrm{O}\left(6^{\text {III }}\right)$	2.365	0.007
$\mathrm{Ca}(2)-\mathrm{F}\left(1^{1 \text { v }}\right)$	2.350	0.007
$\mathrm{Ca}(2)-\mathrm{O}\left(5^{\text {vi }}\right)$	2.411	0.008
$\mathrm{Ca}(2)-\mathrm{F}\left(1^{\text {vl }}\right)$	2.301	0.005
$\mathrm{Ca}(2)-\mathrm{O}\left(5^{\text {vili }}\right)$	2.389	0.005

Angle		
$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{O}(2)$	$111 \cdot 8[\times 3]$	$0 \cdot 3^{\circ}$
$\mathrm{O}(2)-\mathrm{Si}(1)-\mathrm{O}\left(2^{v}\right)$	$107 \cdot 1[\times 3]$	$0 \cdot 4$
$\mathrm{O}(2)-\mathrm{Si}(2)-\mathrm{O}(3)$	$98 \cdot 0$	$0 \cdot 4$
$\mathrm{O}(2)-\mathrm{Si}(2)-\mathrm{O}(5)$	$111 \cdot 8$	$0 \cdot 5$
$\mathrm{O}(2)-\mathrm{Si}(2)-\mathrm{O}\left(4^{v}\right)$	$114 \cdot 4$	$0 \cdot 4$
$\mathrm{O}(3)-\mathrm{Si}(2)-\mathrm{O}(5)$	$110 \cdot 9$	$0 \cdot 4$
$\mathrm{O}(3)-\mathrm{Si}(2)-\mathrm{O}\left(4^{v}\right)$	$113 \cdot 2$	$0 \cdot 4$
$\mathrm{O}(5)-\mathrm{Si}(2)-\mathrm{O}\left(4^{v}\right)$	$108 \cdot 3$	$0 \cdot 5$
$\mathrm{O}(3)-\mathrm{Si}(3)-\mathrm{O}(6)$	$111 \cdot 1[\times 3]$	$0 \cdot 3$
$\mathrm{O}(3)-\mathrm{Si}(3)-\mathrm{O}(3)$	$107 \cdot 8[\times 3]$	$0 \cdot 4$

\quad Length		
$\mathrm{Ca}(3)-\mathrm{O}(2)$	2.690	$0.008 \AA$
$\mathrm{Ca}(3)-\mathrm{O}(3)$	2.717	0.011
$\mathrm{Ca}(3)-\mathrm{O}(4)$	2.375	0.010
$\mathrm{Ca}(3)-\mathrm{O}(7)$	2.401	0.012
$\mathrm{Ca}(3)-\mathrm{F}(1)$	2.401	0.006
$\mathrm{Ca}(3)-\mathrm{F}(2)$	2.521	0.006
$\mathrm{Ca}(3)-\mathrm{F}(3)$	2.343	0.007
$\mathrm{Ca}(3)-\mathrm{O}\left(4^{\text {viI }}\right)$	2.391	0.006

Hydrogen bonds

Length		
$\mathrm{O}(7) \cdots \mathrm{O}\left(1^{1}\right)$	$2.71[\times 3]$	$0.02 \AA$
$\mathrm{~F}(3) \cdots \mathrm{F}\left(3^{11}\right)$	2.94	0.02

Fig. 1. (0001) Projection of the crystal structure of zeophyllite included in a slab between $c=0$ and $c=\frac{1}{6}$. Bonds between $\mathrm{Ca}(3)$ and the coordinated atoms are indicated by dashed lines. Dotted lines indicate hydrogen bonds.

the results of crystal-structure analysis, which suggest the distribution of fluorine atoms; (b) of the chemical composition of the investigated specimen; (c) of crystal chemical considerations. Thus $\mathrm{O}(7)$ belongs to a water molecule. $F(1)$, which is nearly tetrahedrally coordinated by four calcium ions, is a fluoride ion with possibly only a minor substitution by a hydroxyl ion. $F(2)$ is trapped among six calcium cations; thus no hydrogen bonding can be invoked to modify the substantial deviation from an integer number of the valence sum $(1 \cdot 38)$ of bonds joining this anion. It was assumed that this position can be occupied by oxygen or fluorine atoms. The introduction of oxygen ions in this position requires the partial substitution of calcium by aluminum cations to maintain the balance of charges. The stoichiometry $\mathrm{F}_{0.7} \mathrm{O}_{0.3}$ for the $\mathrm{F}(2)$ position was established by taking account of the valence sum of bonds joining this anion and of the chemical composition of the specimen. The $F(3)$ position can correspond to a hydroxyl or a fluoride ion. Table 4 shows that a short approach exists between two centrosymmetrically related $F(3)$ anions. In fact a hydrogen bond can be formed between the two $F(3)$ anions if one is a hydroxyl and the other a fluoride ion; this implies the stoichiometry $\mathrm{F}_{0.5}(\mathrm{OH})_{0.5}$ for the $\mathrm{F}(3)$ position.

As regards $\mathrm{O}(1)$, Table 4 shows that it is engaged in three strong hydrogen bonds with three symmetrically

Fig. 2. The crystal structure of zeophyllite projected on a plane perpendicular to the a_{1} axis.
related water molecules. As it appears in the last column of Table 5, the valence sum of bonds reaching this anion, corrected for the contributions of the hydrogen bonds, is $1 \cdot 73$, which indicates that $\mathrm{O}(1)$ is an oxygen ion. The hydrogen bond valence strengths were estimated, by the procedure of Donnay \& Allmann (1970), from the distances between the hydrogen bonded atoms. However, better valence sums for $\mathrm{O}(1)$ and $\mathrm{O}(7)$ are obtained if the values $v=0.25$ for $\mathrm{H} \cdots \mathrm{O}(1)$ and $v=0.75$ for $\mathrm{O}(7)-\mathrm{H}$ are assumed, according to the correlation between strength and length of hydrogen bonds given by Zachariasen (1963). These valence sum values are given, in parentheses, in the last column of the Table.
The formula which corresponds better to the chemical composition (reported in Table 6) of the specimen studied and to the results of the structural analysis is:

$$
\begin{aligned}
& \left(\mathrm{Ca}_{12.1} \mathrm{Al}_{0.7} \mathrm{Mg}_{0.1} \mathrm{Na}_{0.1}\right) \mathrm{Si}_{1_{0}} \mathrm{O}_{28}\left(\mathrm{~F}_{1.4} \mathrm{O}_{0.6}\right) \\
& \quad\left[\mathrm{F}_{1.0}(\mathrm{OH})_{1.0}\left[\mathrm{~F}_{5.0}(\mathrm{OH})_{1.0}\right] .6 \mathrm{H}_{2} \mathrm{O} .\right.
\end{aligned}
$$

Calcium polyhedra sheet

In the central sheet of the calcium polyhedra there is a calcium ion $\mathrm{Ca}(1)$ in a special position on the origin and a calcium ion $\mathrm{Ca}(2)$ in a general position with sixfold multiplicity.
The $\mathrm{Ca}(1)$ ion is octahedrally coordinated by six equivalent oxygen anions with a bond length $\mathrm{Ca}(1)-\mathrm{O}$ of $2 \cdot 359 \AA$. The eightfold coordination polyhedron about $\mathrm{Ca}(2)$ can be described as a distorted triangular dodecahedron (Lippard \& Russ, 1968). The bond lengths with their standard deviations are given in Table 4.
The $\mathrm{Ca}(1)$ octahedron shares six edges with $\mathrm{Ca}(2)$ polyhedra. Each $\mathrm{Ca}(2)$ polyhedron has four unshared
edges; nine edges are shared with another calcium polyhedron; four edges are shared with two calcium polyhedra and one edge with a silicon tetrahedron. These last contacts have the shortest lengths.

Sheet of silicon tetrahedra and calcium polyhedra

Two silicon tetrahedra, $\mathrm{Si}(1)$ and $\mathrm{Si}(3)$, are in special positions along threefold axes and share three oxygen atoms with $\mathrm{Si}(2)$ tetrahedra, which are in general positions and share only two oxygen atoms with $\mathrm{Si}(1)$ and $\mathrm{Si}(3)$ tetrahedra.

As can be seen from Fig. 1, the tetrahedra form infinite sheets characterized by rings of twelve tetrahedra. In the conventional classification of silicates developed by Bragg, zeophyllite should take its place among the sheet silicates, with a sharing coefficient of $1 \cdot 60$ according to Zoltai (1960) [or $2 \cdot 40$ according to a modified definition by Coda (1969)].

The centre of each ring of twelve tetrahedra is occupied by a group of three symmetry-equivalent calcium polyhedra disposed around a threefold axis. Also, this eightfold coordination polyhedron about $\mathrm{Ca}(3)$ can be described as a distorted triangular dodecahedron.

The bond lengths are reported in Table 4. It can be observed that the four independent non-bridging Si-O distances are shorter than the four bridging $\mathrm{Si}-\mathrm{O}$ distances: their mean values are 1.602 and $1.648 \AA$ repectively, with a highly significant difference.

As regards bond angles, Table 4 shows that the deviations from the ideal value of $109 \cdot 5^{\circ}$ do not exceed $2 \cdot 4^{\circ}$ for all the bond angles excepting $\mathrm{O}(2)-\mathrm{Si}(2)-\mathrm{O}(3)$, whose value is 98.0°. This low value is the result of two different concurrent causes. In fact, among the bond angles in the $\mathrm{Si}(2)$ tetrahedron, the lowest values $(98.0$

Table 6. Chemical analyses and unit cell contents

	1	2	3		$1 a$		$2 a$		$3 a$	
SiO_{2}	38.82	38.84	36.0	Si	$9 \cdot 87$		9.92		$9 \cdot 15$	
$\mathrm{Al}_{2} \mathrm{O}_{3}$	$2 \cdot 16$	$1 \cdot 73$	1.5	Al	$0 \cdot 64$		0.52		$0 \cdot 45$	
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	-	$0 \cdot 10$	-	Fe			0.02			
MgO	$0 \cdot 26$	$0 \cdot 17$	<0.5	Mg	0.09	$12 \cdot 81$	0.06	12.99	<0.19	
CaO	$43 \cdot 44$	44.32	$46 \cdot 3$	Ca	11.82		$12 \cdot 13$		12.61	~ 13
$\mathrm{Na}_{2} \mathrm{O}$	n.d.	$0 \cdot 32$	$0 \cdot 48$	Na	(0.18)		$0 \cdot 18$		$0 \cdot 24$	
$\mathrm{K}_{2} \mathrm{O}$	n.d.	$0 \cdot 24$	$0 \cdot 09$	K	(0.08)		0.08		0.03	
$\mathrm{H}_{2} \mathrm{O}$	$8 \cdot 56$	8.98	11.0	$\mathrm{H}_{2} \mathrm{O}$	14.52		$15 \cdot 30$		18.66	
F	$9 \cdot 48$	8.23	7.49	F	$7 \cdot 62$		$6 \cdot 65$		6.02	
	$\overline{102.72}$	$\overline{102.93}$	$\overline{102 \cdot 86}$							
Less O for F	3.99	3.47	$3 \cdot 15$							
	98.73	99.46	99.71							
Density	$\begin{aligned} & 2.75^{*} \\ & 2.7488 \end{aligned}$	$2.764 \dagger$	2-747 \ddagger							

1 and $1 a$: Zeophyllite from Radzein, analysis by F. Cornu (Hibsch, 1917). Alcalies were not determined; in column $1 a$ the unitcell contents for sodium and potassium were assumed equal to those obtained for zeophyllite from Grosspriesen.
2 and $2 a$: Zeophyllite from Grosspriesen, analysis by E. Zdarek (Pelikan, 1902b).
3 and $3 a$: Zeophyllite from Leitmeritz, Alter Berg, analysis by R. A. Chalmers (Chalmers Dent \& Taylor, 1956).

[^1]and $108 \cdot 3^{\circ}$) correspond to the two opposite edges $\mathrm{O}(2)$ $\mathrm{O}(3)$ and $\mathrm{O}(5) \mathrm{O}\left(4^{v}\right)$ which $\mathrm{Si}(2)$ shares with the $\mathrm{Ca}(3)$ and $\mathrm{Ca}(2)$ polyhedra respectively. A similar situation exists in grossular, where the silicon tetrahedron shares two symmetry equivalent opposite edges $\mathrm{O}(1) \mathrm{O}(2)$ with calcium dodecahedra, with an angle $\mathrm{O}(1)-\mathrm{Si}-\mathrm{O}(2)$ of $102 \cdot 5^{\circ}$ (Novak \& Gibbs, 1971). However, the two shared edges in the $\mathrm{Si}(2)$ tetrahedron of zeophyllite are not equivalent because $O(2)$ and $O(3)$ are bridging oxygen atoms $[\mathrm{Si}(2)-\mathrm{O}(2) 1.646, \mathrm{Si}(2)-\mathrm{O}(3) 1.654 \AA]$, whereas $\mathrm{O}(5)$ and $\mathrm{O}\left(4^{\mathrm{v}}\right)$ are non-bridging $[\mathrm{Si}(2)-\mathrm{O}(5)$ $\left.1 \cdot 616, \mathrm{Si}(2)-\mathrm{O}\left(4^{v}\right) 1 \cdot 595 \AA\right]$: the $\mathrm{Si}(2)$ atom is shifted toward the $\mathrm{O}(5) \mathrm{O}\left(4^{v}\right)$ edge, thus increasing the value of the $\mathrm{O}(5)-\mathrm{Si}(2)-\mathrm{O}\left(4^{\text {v }}\right)$ angle and correspondingly reducing the value of the $\mathrm{O}(2)-\mathrm{Si}(2)-\mathrm{O}(3)$ bond angle.

The $\mathrm{Ca}(3)$ polyhedron has nine unshared edges: four are shared with another calcium polyhedron, four are shared with two calcium polyhedra, and one with a silicon tetrahedron. As in the case of $\mathrm{Ca}(2)$ polyhedron, these last contacts present the shortest lengths.

Distances shorter than $3.0 \AA$ between anions not bonded to the same cation indicate hydrogen bonding and are reported in Table 4.

- In conclusion, as can be seen from Figs. 1 and 2, $O(1), O(7)$ and $F(3)$ are engaged in hydrogen bonds with $\mathrm{O}\left(7^{1}\right), \mathrm{O}\left(1^{1}\right)$ and $\mathrm{F}\left(3^{\text {ii }}\right)$ respectively, situated in a succeeding symmetry-related layer. The chemical nature of these anions has already been discussed in the section on anion chemistry.

Crystal chemistry

The three known chemical analyses of zeophyllite are reported in Table 6, together with the empirical unitcell contents. It can be seen that the results of the chemical analyses of zeophyllite from Radzein, on which this structural study was undertaken, and of zeophyllite from Grosspriesen are very similar. Thus, for both specimens, the formula already given in preceding section can be assumed:

$$
\left(\mathrm{Ca}_{12.1} \mathrm{Al}_{0.7} \mathrm{Mg}_{0.1} \mathrm{Na}_{0.1}\right) \mathrm{Si}_{10} \mathrm{O}_{28} \mathrm{~F}_{7.4} \mathrm{O}_{0.6}(\mathrm{OH})_{2.0} .6 \mathrm{H}_{2} \mathrm{O} .
$$

The presence of six water molecules is in agreement with the dehydration study of Chalmers et al. (1956).

As regards zeophyllite from Leitmeritz, which was analyzed and studied by Chalmers et al. (1956), its chemical composition appears to deviate measurably
from the formula given above. The deficiency in silicon and the increase in water content are the most apparent features. As the dehydration data of Chalmers indicate the presence of six water molecules in the rombohedral unit cell, the excess water should appear as hydroxyl ions in the crystal structure. Thus a substitution of the type $\left(\mathrm{O}_{4} \mathrm{H}_{4}\right)$ for $\left(\mathrm{SiO}_{4}\right)$, as has been postulated for certain phyllosilicates, the hydrogarnets and others, can be assumed, leading to the following formula for zeophyllite from Leitmeritz:

$$
\mathrm{Ca}_{13} \mathrm{Si}_{9.5}\left(\mathrm{O}_{4} \mathrm{H}_{4}\right)_{0.5} \mathrm{O}_{26}(\mathrm{OH})_{4} \mathrm{~F}_{6} .6 \mathrm{H}_{2} \mathrm{O} .
$$

This research was supported by Consiglio Nazionale delle Ricerche, Roma. All the calculations were carried out at the Centro Nazionale Universitario di Calcolo Elettronico, Pisa.

References

Ahmed, F. R. (1969). In Crystallographic Computing. Edited by F. R. Ahmed, p. 55. Munksgaard: Copenhagen.
Alberti, A. (1968). Period. Miner. 37, 595.
Alberti, A. \& Gottardi, G. (1966). Acta Cryst. 21, 833.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Chalmers, R. A., Dent, L. S. \& Taylor, H. F. W. (1956). Mineral. Mag. J. Mineral. Soc. 31, 726.
Coda, A. (1969). Rend. Soc. Mineral. Ital. 25, 195.
Cornu, F. (1905). Mineral. petrogr. Mitt. 24, 127.
Donnay, G. \& Allmann, R. (1970). Amer. Miner. 55, 1003.
Hall, S. R. (1966). World List of Crystallographic Computer Programs. 2nd Ed. Appendix, p. 52. Program 537. Нıвsch, I. E. (1917). Mineral. petrogr. Mitt. 34, 197.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Koechlin, R. (1934). Zentralbl. Mineral. Geol. Paläontol. A, 263.

Lippard, S. J. \& Russ, B. J. (1968). Inorg. Chem. 9, 186.
Novak, G. R. \& G ibss, G. V. (1971). Amer. Miner. 56, 791.
Pelikan, A. (1902a). Anz. Akad. Wiss. Wien, Math. Naturwiss. Kl. 39, 114.
Pelikan, A. (1902b). Sitzungsber. Akad. Wiss. Wien, Abt. I, 111, 334.
Stewart, J. M. (1964). Crystal Structure Calculations System for the IBM 709/7090/7094. Technical Report Tr-64-6, Computer Science Centre, Univ. of Maryland, and Research Computer Laboratory, Univ. of Washington.
Zachariasen, W. H. (1963). Acta Cryst. 16, 385.
Zoltal, T. (1960). Amer. Miner. 45, 960.

[^0]: * Professor Taylor has informed me that he and Dr DentGlasser have looked again at their original X-ray photographs and they agree that their specimen also is rhombohedral.

[^1]: * Hibsch (1917).
 \dagger Cornu (1905).
 \ddagger Pelikan (1902b).
 § Chalmers, Dent \& Taylor (1956).

